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In response to harmonic forces generated by the heart, the arterial system executes strong coupled
distributed oscillatory motions. These oscillations are described by a pressure-area wave equation,
which is solvable subject to appropriate Sturm–Liouville boundary conditions. The response
pressure can be represented as a sum of stationary waves which are the eigenmodes of the whole
arterial system. Natural frequencies of the system are related to the eigenvalues and the phase
velocity. Matching of these natural frequencies with heart rate or its harmonics is important in
ventricular-arterial coupling. Transfer functions for the pressure can be constructed from the
corresponding eigenfunctions. © 2008 American Institute of Physics. �DOI: 10.1063/1.2911746�

Arterial pulses are fundamental signs in clinical medi-
cine. A proper solution of the pulse wave distribution in the
ventricular-arterial coupling system is one of the most impor-
tant and unsolved physical problem in hemodynamics. Most
of the earlier researchers in pulse analysis of arterial systems
adopted either the Windkessel model or the transmission line
theory.1,2 Efforts were later made to show that various mod-
els initiated the “natural frequency” and “standing waves” of
the blood vessels by analogy with the behavior of mano-
meters.3,4 McDonald5 criticized the concept as being physi-
cally impossible, arguing that the reflected waves are consid-
erably damped during their travel between the reflection
sites. Since then, many of the pulse wave analysis for arterial
system treat measured pressure and flow waves as the sum of
a single forward wave and a single backward wave.

Berger et al.6 developed a more general wave reflection
theory that allows repeated reflections of these waves. Khir
and Parker7 demonstrated in vitro that reflected waves can be
rereflected. Nichols and O’Rourke2 pointed out that it is im-
possible to explain the data on pressure waves without ad-
mitting wave reflection and conceding that a type of damped
resonance does indeed occur.

Currently, most pulse wave analysis on the ventricular-
arterial coupling system is based on the concept that pressure
gradient forces drive the axial flow Q, with the Navier–
Stokes equation as the major governing equation.1 These
models took forces arising from compliant walls or any other
nonlinear effects as perturbations.8–10 We called them the PQ
wave models.11 We have pointed out that PQ wave models
are not appropriate in describing systems of high pressure
and low elastic modulus,11 which is precisely the situation in
most large arteries. We have also analyzed that the major
wave modes in large arteries are the variation of the cross-
sectional area S of the artery driven by the pulsatile pressure
force,11 or the PS wave mode. Hence, the pressure-area wave
equation12 plays the role of the master equation for pulse
waves. Energy dissipations during wave propagation in the

PS wave model are much lower than in the prevailing PQ
wave model, thus, making multireflections in large arteries
plausible.11,13

In this letter, we will use Bernoulli’s oscillatory
method14 to analyze pulse waves in the ventricular-arterial
coupling system by solving the pressure-area wave equation.
We will demonstrate that the response pressure is character-
ized by the natural frequencies of the whole arterial system.
We will also derive the rule of “frequency matching”13 in the
coupled ventricular-arterial system by analyzing the ampli-
tudes of the pressure eigenmodes.

Let us consider a blood vessel with cylindrical shape,
and take the axis of symmetry as the z axis and the inner
radius as r�z , t�. In a previous study,12 we have derived that
the cross-sectional area S�z , t�=�r2 obeys the following
wave equation:

�
�2S

�t2 + R
�S

�t
+ 2��E�hw

�r

r0
− r�PI − P0�� = �

�2S

�z2 + Fe.

�1�

Here we assume that the elastic vessel is of thickness hw
and density �w, and there is a thin layer of blood with thick-
ness hb and density �b transversely moving with the vessel.
Other parameters appearing in Eq. �1� are �=�whw+�bhb,
resistance constant for transverse motion R, local internal
pressure PI�z , t�, local external pressure P0�z�, and the inner
radius of the artery r0 when PI= P0. Furthermore, we define
�r=r−r0 and �=Erzhw+Tw. Here, Tw is the longitudinal ten-
sion per unit circumferential length of the elastic vessel; Erz
is the shearing modulus of elasticity of the vessel. Also ap-
pearing is the external force per unit axial length Fe acting on
the arterial system, and Young’s modulus of elasticity E� of
the vessel in the circumferential direction.

We call Eq. �1� the transverse PS wave equation. The
blood acts more of a mediator to pass the pressure than a
medium to transmit the ventricular energy output.

The local internal pressure starts from an initial value
PS�z� at t=0. We define the response pressure P�z , t�
= PI�z , t�− PS�z� and assume PS�z� has vanishing second de-
rivative with respect to the axial position z. We also define
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area compliance as CA=dS /dPI. Then, Eq. �1� becomes

�
�2P

�t2 + R
�P

�t
+ � = �

�2P

�z2 +
1

CA
Fe. �2�

Here �=2���E�hw�r /r�−r�PI− P0�� /CA. Following
Laplace’s theory for thin-walled tubes,15 E� can be expressed
as E�=r0

2�PI− P0� / �hw�r�. Thus, as a first order of approxi-
mation, we take ��0, and Eq. �2� can be written as

�2P

�t2 + 2b
�P

�t
= C2�2P

�z2 +
1

�CA
Fe, �3�

with b=R / �2��, and C= �� /��1/2. This expression for the
wave velocity C plays the role in the PS model as the well-
known Moens–Korteweg formula16 in the PQ models.

The only driving force for the arterial system comes
from the ventricular blood ejection. We assume that the po-
sition of the heart is at z=zH and the ejection starts from t
=0. The external force per unit length can be written as
Fe�z , t�=F�t���z−zH�.

In what follows, two different kinds of force will be
considered. One is an impulsive force with F�t�=FI= I0��t�
since the impulse response method is often used to experi-
mentally find out the natural frequencies of a system. The
other is a harmonic force of input frequency 	 given by
F�t�=F	=F0	 sin 	t.

In this study, we only assume that general boundary con-
ditions for the Sturm–Liouville problem17 are satisfied. We
will solve the PS wave equation by assuming that the area
compliance, the resistance, and the wave velocity are con-
stant along the artery.

As the external force is turned on at time t=0, the pres-
sure starts to deviate from its initial value PS�z�. Hence, the
initial conditions for the response pressure can be written as
P�z ,0�=0, and ��P�z , t� /�t�t=0=0.

We first solve the initial value problems by Laplace
transformation method. Taking the initial conditions into ac-
count, the transformed Eq. �3� can be written as

�2Y�z,s�
�z2 + 
SY�z,s� = − H�s���z − zH� . �4�

Here, 
S=−�s2+2bs� /C2, Y�z ,s� is the Laplace transform of
P�z , t�, and H�s� is the Laplace transform of F�t� / �C2�CA�.

By the method of Green’s functions,17 the solution of Eq.
�4� can be expressed in terms of the normalized eigenfunc-
tions �n�z� of free oscillation of the arterial system as

Y�z,s� = 	
n=1

�

�n�zH��n�z�
1


n − 
S
H�s� . �5�

Each eigenfunction �n�z� with the corresponding eigenvalue

n satisfies both the required Sturm–Liouville boundary
conditions17 and the following equation:

d2�n�z�
dz2 + 
n�n�z� = 0, n = 1,2,3, ¯ . �6�

The solution P�z , t� can then be obtained by taking the in-
verse Laplace transform of Eq. �5�.

The pressure response of an impulsive force FI can be
derived as

PI�z,t� = AI	
n=1

�

�n�zH��n�z�
e−bt

	
n
* sin�	

n
*t� . �7�

Here, 	
n
*= �	n

2−b2�1/2, AI= I0 / ��CA�, and 	n=
n
1/2 /C.

Equation �7� shows that our model of the arterial system
is characterized by a set of natural frequencies which are
related to the eigenvalues 
n and the wave velocity C. We
may then describe the arterial system as a special damped
drum with the elastic arterial wall as its drumhead. The exact
values of these 	n depend on the physiological structure of
the arterial system.

Similarly, in the steady state, the pulsatile part of the
pressure response to an input harmonic force F	 of angular
frequency 	 can be obtained as

P	�z,t� = A		
n=1

�

�n�zH��n�z�Cn sin�	t + 
n� , �8�

where A	=F0	 / ��CA�, 
n=tan−1�2b	 / �	2−	n
2��, and Cn

= ��	2−	n
2�2+4b2	2�−1/2.

As shown above, the amplitudes of different eigenmodes
of the pressure response at position z are proportional to Cn.
From the expression of Cn, we see that the eigenmode with
natural frequency near the input frequency 	 is the mode that
will be greatly enhanced so that the pressure amplitude of
that eigenmode is maximized. We may call this the fre-
quency matching condition.

Were the pressure waves in arterial system primarily
propagating via the PQ wave mode, the high dissipation
through the flow viscosity would have resulted in significant
attenuation and prevented multireflections. In real arterial
systems, since the energy associated with the axial flow is
low,18 the dissipation in flow viscosity is also small. With the
PS wave mode as the major energy transport mechanism, an
arterial system behaves as a forced radial vibration system
with damping. In the PQ wave model, reflections occur at
sites with mismatch in impedance �P /Q�.1,2 In this study, we
point out that major reflections only happen at locations with
discontinuities in the wave velocity.

We may assume that after a transient time, the
ventricular-arterial system will reach a steady state and the
whole arterial system will execute distributed stationary vi-
brations. Hence, the primary power consumption in deliver-
ing the blood from the left ventricle to the veins is only the
dissipation in flow viscosity and in vibration resistance.

When the blood periodically bursts from the left ven-
tricle at a frequency near the principal natural frequency of
the arterial system, it is said to be in the first frequency
matching condition. By this coupling, the efficiency of the
principal harmonic component of the ventricular output is
optimized since the amplitude of the pressure wave influ-
ences the amount of blood flowing into the arterioles.

With further physiological investigations of the reflec-
tion sites and the conditions at the ends, the values of the
natural angular frequencies 	n of the arterial system can be
computed.

In studying the matching between organs and the sup-
plied force from the large arteries,19 this frequency matching
rule for the PS wave model may also be utilized and be
compared with the result of the prevailing “impedance
matching”20 for the PQ wave model.
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The input force from the heart is comprised of many
harmonic components so that it generates many different har-
monic pressure responses. Equation �8� also shows that the
contributions from the different eigenmodes to the pressure
response have different position dependencies through the
eigenfunctions �n�z�. This provides a method to explain the
change of the pressure shape along the artery,1,2 which also
allows one to construct a transfer function21 for the pressure
waves at two different sites of the arterial system. All these
will need further physiological and physical investigations.
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